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Synthetic neuromorphic computing in
living cells

Luna Rizik1,5, Loai Danial2,5, Mouna Habib1,5, RonWeiss 3,4 & Ramez Daniel 1

Computational properties of neuronal networks have been applied to com-

puting systems using simplified models comprising repeated connected

nodes, e.g., perceptrons, with decision-making capabilities and flexible

weighted links. Analogously to their revolutionary impact on computing,

neuro-inspiredmodels can transform synthetic gene circuit design in amanner

that is reliable, efficient in resource utilization, and readily reconfigurable for

different tasks. To this end, we introduce the perceptgene, a perceptron that

computes in the logarithmic domain, which enables efficient implementation

of artificial neural networks in Escherichia coli cells. We successfully modify

perceptgene parameters to create devices that encode aminimum,maximum,

and average of analog inputs. With these devices, we create multi-layer per-

ceptgene circuits that compute a softmajority function, perform an analog-to-

digital conversion, and implement a ternary switch. We also create a pro-

grammable perceptgene circuit whose computation can bemodified fromOR

to AND logic using small molecule induction. Finally, we show that our

approach enables circuit optimization via artificial intelligence algorithms.

A central goal of synthetic biology1–9 is to create large-scale genetic

networks in living cells that implement sophisticated sensing, pro-

cessing, and actuation10–14. To date, both the digital and analog com-

puting paradigms have been implemented in living cells in an attempt

to design and build genetic circuits efficiently. The digital paradigm,

which abstractly computes with two discrete binary-coded levels

[0,1]15, has inspired implementation of wide variety of genetic circuits,

including logic gates16–18, memory elements19–21, a counter22, state

machines23, a toggle switch24, a digitizer25, and highly complex logic

functions26,27. The analog paradigm, in contrast, computes on a con-

tinuous set of numbers and has been suggested as an alternative to the

digital paradigm for tasks that don’t require decision-making28–30.

Efforts in synthetic biology have also focused on other aspects of cir-

cuit control, such as complex temporal dynamics31–33, and integral

feedback controllers for robust adaptation34,35.

Despite themany successful accomplishments to-date, significant

challenges hinder further scaling of synthetic biological systems based

on digital and analog computing1,36. Critical impediments include cel-

lular resource limitations, high levels of random fluctuations, and

undesirable interactions between synthetic parts and host cells1,36,37.

Furthermore, digital design is often not suitable for computing with

graded biological signals, while analog circuits may accumulate noise

as they scale in size37.

Alternatively, biological systems in nature exhibit nonlinearity

across scales from the molecular level to network and inter-cellular

systems and use redundant regulation and collective interactions

to robustly execute highly sophisticated tasks; such as cell

differentiation38. Furthermore, several theoretical analyses of certain

gene regulatory networks demonstrate neural-like computational

behavior39–42. Therefore, we have sought to adapt non-linearmodels in

the form of neural-like computing43,44 into individual single cells to

overcome the aforementioned bio-design challenges.

The neuromorphic computing paradigm, which employs design

principles and approaches of neuronal systems, has been successfully
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applied to a wide range of fields, including electronics45–48, optics49,

software algorithms44, and even in vitro DNA computing50, leading to

the realization of artificial intelligence systems.Neuromorphic systems

efficiently solve complex tasks such as content addressable memory,

pattern classification, object recognition, and optimization through

machine learning algorithms. Furthermore, an advantage of neuro-

morphic computing systems compared to their digital counterparts is

that implementing a given task often requires fewer computational

devices46,48, significantly when resources are scarce (such as synthetic

biology). Neuromorphic systems usually combine analog information

processing with decision-making capabilities using non-linear activa-

tion functions (e.g., sigmoid, rectifiers, step function) and support

iterative optimization strategies. In these optimization strategies,

characterization of circuit behavior is interleaved with iterative chan-

ges in computing deviceparameters, for example, based onprediction

of how changes under consideration correlate with the derivative of an

overall score function.

Results
Neuromorphic computing systems that implement artificial neural

networks (ANNs) operate differently than conventional computing44.

ANNs use analog information processing units that collectively

interact through interconnected non-linear functions (Supplemen-

tary Fig. 1). The fundamental building block of an ANN is a

perceptron51, which consists of a linear combination of weighted

analog input signals (Supplementary Fig. 2). The analog computation

result serves as an input to an activation function that computes the

perceptron’s non-linear output behavior with soft and hard classifi-

cations. The soft classification is observed by using a sigmoid acti-

vation function z = ey

1 + ey; where y is a linear signal and serves as an

input to the activation function, and the output z is a non-linear

analog signal between 0 and 1. The hard classification is observed by

using a step activation function; where the output z is a discrete

signal receiving only 0 and 1. In considering an adaptation of this

model to gene regulatory networks inside individual living cells, it is

worthwhile to note that biological pathways often operate in a non-

linear fashion and exhibit logarithmic and power law input–output

relations, where outcomes are dictated by relative fold-changes

rather than absolute levels28,52,53. Therefore, to implement ANNs in

living cells, we define a log-based version of a perceptron, termed the

perceptgene (Fig. 1a), whose logarithmic input–output operation

makes it more suitable for the non-linear nature of biochemical

reactions and gene regulation. The perceptgene implements a loga-

rithmic classifier that asymptotically partitions all input values into

two classes of output data points (Fig. 1a, right).

In the perceptgene design operating in the logarithmic domain,

the perceptron’s linear operations of scalar multiplication and sum-

mation are transformed to exponentiation (power-law) and multi-

plication, respectively (Fig. 1a). The perceptgene’s sigmoid activation

function is described by Michaelis–Menten kinetics at steady state28,37

(z = elnðyÞ

1 + elnðyÞ
, where y is a scaled protein concentration) and also operates

in the logarithmicdomain. In order tomake theperceptgeneoperation

more compatible with the realities of gene expression, we added basal

expression β to the activation function (z = elnðyÞ +β
1 + elnðyÞ +β

,β « 1) (Fig. 1a). As

we discuss below, the perceptron’s high-level operations, e.g., weigh-

ted multi-input functions, classification, and gradient descent for

learning algorithms46,48 are supported by the perceptgene’s log-based

computing. Further discussion on perceptron and perceptgene mod-

els is provided in Supplementary Notes, Perceptual computingmodels

(Sensitivity, noise and non-linearity analysis).

The perceptgene output is computed as a linear combination in

the logarithmicdomain (i.e.,multiplication) of theweighted inputs and

the bias in comparison to the threshold of the activation function

(“Methods,” Perceptgene abstract model). In the perceptgene imple-

mentation, the weights are mainly determined by the Hill coefficients

and design topology (e.g., feedback loops). The bias is set by the ratio

between the maximum protein (transcription factor) level and the

binding affinities of protein-protein/protein-DNA reactions. The fold

change of perceptgene output is set by the basal level, which in turn,

determines the threshold of the activation function. Practically, we

demonstrate our ability to fine-tune perceptgene biological para-

meters, including Hill coefficients, using well-known strategies for

modifying gene regulatory networks (Supplementary Notes, Design

principles of neuromorphic gene circuits).

To implement the perceptgene in living cells, we first created a

synthetic gene circuit that combines power-law and multiplication

functions (Fig. 1b). The power-law function encodes weighted inputs

by assigning for each input a particular weight, and the multiplication

function aggregates the analog values of the weighted inputs. Our

circuit inputs are small molecule inducers: isopropyl β-D-1-

thiogalactopyranoside (IPTG) and anhydrotetracycline (aTc), which

bind LacI and TetR repressors, respectively. The repressors regulate

their own production with auto-negative feedback loops via the PlacO
and PtetO promoters28. These auto-negative feedback loops implement

the input’s power-law functions and increase the dynamic range28. To

implement the multiplication function, we connected combinatorial

promoter (PlacO/tetO)
54 encoding LacI and TetR operators to the auto-

negative feedback loops. The IPTG/aTc regulation of PlacO/tetO pro-

moter via constitutively expressed LacI and TetR implements a con-

ventional Boolean AND logic gate54, but the regulatory topology

described here, auto-negative feedback, converts the promoter’s

operation into a logarithmically classifier (Eq. 2.13, Supplemen-

tary Notes).

Experimentally, the IPTG/aTc transfer function has an input

dynamic range of two orders ofmagnitude for each input (Fig. 1c). Our

minimized biochemical model reveals that the power-law coefficients

are determinedmainly by Hill coefficients describing inducers binding

to transcription factors and repressors binding to promoters (Eq. 2.17,

Supplementary Notes). Motivated by this analysis, we modified one of

the auto-negative feedback loops by replacing PlacO (which has two

LacI binding sites) with PlacO1 (which has only one LacI binding site)

(Supplementary Fig. 17b). The reduced cooperativity of PlacO1 resulted

in a measured 50% increase in IPTG’s power-law coefficient, i.e., its

input weight (Fig. 1d). For a negative feedback loop, our mathematical

model shows that the IPTG Hill coefficient is inversely proportional to

the number of repressor binding sites in PlacO and PlacO1 (Eq. 2.20.9,

Supplementary Notes). Experimentally, the output of the modified

power law andmultiplication circuit (using PlacO1/tetO) exhibits a three-

dimensional linear plot in log-scale coordinations (Fig. 1d) with a

NonLinearity degree of 1.33 (Table 1). The NonLinearity degree of gene

circuit is computed as the ratio between two slopes – the slope of the

input-output transfer function within the linear range, and the slope of

a linear curve with the same input dynamic range and maximum fold

change of the gene circuit (Supplementary Notes, NonLinearity

degree). The kinetics of this optimized power law and multiplication

circuit remained stable over the course of approximately ten hours

(Supplementary Figs. 92 and 93).

Next, to implement the full perceptgene, we connected the

power-law and multiplication function to a customizable activation

function. Specifically, we selected PBAD/AraC activation, and hence

encoded AraC downstream of PlacO/tetO, which in turn regulates per-

ceptgene output via promoter PBAD and Arabinose inducer (Fig. 1g).

A perceptgene with PBAD/AraC activation can be readily customized to

perform different computational tasks (e.g., minimum,maximum, and

average) by modifying mainly Arabinose concentration (Supplemen-

tary Fig. 22b). Arabinose levels tune the PBAD/AraC Hill coefficient by

converting the transcriptional repression function of free AraC to

transcriptional activation of the AraC/Arabinose complex55. Experi-

mentally, with low Arabinose levels, the circuit converts an analog

pattern of two inputs (IPTG and aTc) into a non-linear function, with a
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NonLinearity degree of 3.8 (Table 1), that allows performing soft

classification (Fig. 1h). Our experimental results correlates well with a

detailed biochemical model (Fig. 1i and Supplementary Fig. 24).

We then analyzed the computational capabilities of this percept-

gene and closely related variants. By extending existing neural com-

puting analysis of perceptrons56, we proved that the smoothminimum,

maximum, and average functions can theoretically be encoded in the

operation of perceptgenes using a log-transformed negative rectifier,

log-transformed positive rectifier and log-transformed linear activa-

tion functions, respectively (Supplementary Notes, Smooth logical

functions).

In termsof the perceptgene activation function, for lowArabinose

induction levels, PBAD promoter exhibits a shifted and biased log-

transformed negative rectifier (Supplementary Fig. 22d); log(AraC)

below a threshold (u01) result in promoter expression proportional to

log(AraC), while concentrations above this u01 threshold result in an

asymptotically high output (Supplementary Fig. 32c). Theoretically,

the log-transformed negative rectifier used in this design can compute

the minimum between the u01 threshold and log(AraC) (“Methods,”

Smooth functions). When the log(AraC) is a linear combination of the

weighted IPTG and aTc inputs as indicated by this design, the min{-

u01,log(AraC)} operation can be transformed for a minimum between

Article https://doi.org/10.1038/s41467-022-33288-8

Nature Communications |         (2022) 13:5602 3



IPTG and aTc inputs with an offset proportional to aTc (“Methods,”

Smooth functions). After graphing the two inputs and the preceptgene

output at the logarithmic scale, where the inputs are normalized by

their respective dynamic ranges, and the output is normalized by the

offset above, smooth minimum computation is revealed, with a stan-

dard error of 10% (Fig. 1j, Supplementary Fig. 34, and Supplementary

Table 13).

Next, we implemented a perceptgene with an activation function

encoding a shifted and biased log-transformed positive rectifier using

a modification of the PBAD/AraC system (Supplementary Fig. 22d). In

particular, PBAD implements a positive rectifier for high Arabinose

concentrations and low AraC levels (Supplementary Fig. 32c). For this

positive rectifier, log(AraC) below a u02 threshold result in a low con-

stant PBAD activity, while log(AraC) concentrations above this value

elicit promoter expression proportional to log(AraC). Here, we control

AraC level with the Lux and Tet systems (Fig. 2a–d), sincewewanted to

expand the set of regulatory elements that could be incorporated into

multi-perceptgene networks. The inputs to this circuit are aTc and acyl

homoserine lactone (AHL). aTc induces expression as above, while

AHL binds transcriptional activator LuxR, forms AHL-LuxR complex,

and activates promoter Plux (Fig. 2a).

We focused on finding the best AHL/aTc regulation that matches

the input dynamic range of PBAD/AraC for implementing the positive

rectifier function. For AraC expression, we incorporated Plux/tetO, a

combinatorial promoter with LuxR and TetR operators54. For TetR/aTc

regulation, we used the same topology as above. Toobtain a LuxR/AHL

power-law response, we built a graded auto-positive feedback loop28

using a weak Plux mutant that broadens the input dynamic range

(Supplementary Fig. 26). Similar to the analysis of auto-negative

feedback, our biochemical model of auto-positive feedback revealed

that the power-law coefficients are determined by the Hill coefficient

and binding affinity of LuxR to promoter Plux (Eq. 2.37, Supplementary

Notes). We built a library comprising seven different Plux mutant by

introducing randommutations to the LuxR operator, which alter LuxR

binding affinity to Plux (Supplementary Figs. 27 and 87). The mutant

PluxTGT achieved the best match with the input dynamic range of PBAD/

AraC under high Arabinose levels. Experimentally, the measured AHL/

aTc transfer function of Plux/tetO exhibits a power-law and multi-

plication output response with an input dynamic range for both inputs

roughly of two orders of magnitude (Fig. 2b). This transfer function

correlated well with our detailed biochemical model (Fig. 2c). To cre-

ate the full perceptgene, we encoded AraC activator under Plux/tetO,

which in turn regulated the PBAD promoter (Fig. 2d). Experimentally,

with high Arabinose levels, the perceptgene converts an analog pat-

ternof two inputs (aTc andAHL) into anonlinear function (Fig. 2e)with

a NonLinearity degree of 2 (Table 1).

Similar to the analysis of theminimum computation, we observed

that a two-input perceptgene with an activation function of a log-

Fig. 1 | Perceptgene theory and implementation. aThe Perceptgenemodel raises

each analog input (xi) to the power of its correspondingweight (ni), thenmultiplies

these power-law products to obtain y=B �
Q

x
ni

i where B is a bias that shifts y into

thedesired range, andfinally computes theoutput using z = β+ elnðyÞ

1 +β+ elnðyÞ
with z∈ [β,1],β

is a minimum (i.e., basal) level. Depicted on the right are power-law and multi-

plication function, and perceptgenes with sigmoid and step activation functions.

b The power-law and multiplication circuit for IPTG and aTc inputs. Combinatorial

promoter (PlacO/tetO) is encoded on a high-copy-number plasmid (HCP) and is

regulated by LacI and TetR repressors. PlacO, encoded on a low-copy-number

plasmid (LCP), and PtetO, encoded on a medium-copy-number plasmid (MCP), are

regulated through auto-negative feedback loops by LacI and TetR and induced by

IPTG and aTc, respectively. Depicted on the right is a block diagram for the genetic

circuit operation. c The measured transfer function shows the GFP at steady state.

Solid line fits to IPTG
1:25

� �0:3375
� aTc

0:7

� �0:26
with R2 =0.97. d Measured transfer function

for a modified circuit where PlacO within the auto-negative feedback loop was

replaced by PlacO1. Solid line fits to IPTG
1:25

� �0:3375
� aTc

0:7

� �0:4375
with R2 =0.99.

e, f Computed transfer functions of power-law andmultiplication circuits with Placo

and PlacO1, respectively. IPTG and aTc levels are normalized by their dissociation

constants of IPTG-LacI binding and aTc-TetR binding, respectively. Solid line fits to
IPTG
1:25

� �0:3375
� aTc

0:7

� �0:26
and IPTG

1:25

� �0:3375
� aTc

0:7

� �0:437
, R2 >0.95 respectively. g A percept-

gene genetic implementation by adding AraC fused to an ssrA degradation tag

regulating the PBAD promoter. Depicted on the right is a block diagram for the

genetic circuit operation. The bias is equal to the ratio between maximum AraC

expression level and PBAD binding affinity. h, i Measured and simulated transfer

functions of the perceptgene with Arabinose = 0.04mM. Solid line fits to per-

ceptgene
½ IPTG

1:25ð Þ
0:3375

� aTc
0:75ð Þ

0:4375
=19�

2:2
+0:045

½ IPTG
1:25ð Þ

0:3375
� aTc

0:75ð Þ
0:4375

=150�
2:2

+ 1
with R2 >0.9. j A log-transformed smooth

minimum computation. The solid lines indicates the minimum between

n3·log(IPTG/IDR3) and log(B2) − (n4 −w1)·log(aTc/IDR4), where n3 =0.337,

n4 =0.473, w1 =0.3, log(B2) = −1, const1 =0.6, log(IDR3) = 2.1, log(IDR4) = 2.1. The

IDR3 and IDR4 are input dynamic ranges of IPTG and aTc, respectively. Measured

data are normalized by theminimum level. The data represent the average of three

experiments. Source data are available in the Source data file.

Table 1 | NonLinearity degree of neuromorphic gene circuits

Data Circuit Data fitting Kd m β IR MFC logðMFCÞ
logðIRÞ

Nonlinearity

Fig. 1d Power-law and multi-
plication
(Fig. 1b)

Supplementary Fig. 23a 150 1 0.0001 128 38 0.75 1.33

Fig. 1h Perceptgene
(Fig. 1g)

Supplementary Fig. 23b 19 2.2 0.045 128 16.5 0.57 3.8

Fig. 2b Power-law and multi-
plication
(Fig. 2a)

Supplementary Fig. 29b 250 1 0.0001 45 40 0.96 1.03

Fig. 2e Perceptgene
(Fig. 2d)

Supplementary Fig. 31 1400 1.27 0.00045 48 11.5 0.64 2

Fig. 2h Perceptgene
(Fig. 2g)

Supplementary Fig. 40b 400 0.95 0.0001 24 16 1.06 1.08

IR is defined as the input range, and MFC is defined as the maximum fold change. To evaluate the Nonlinearity of a neuromorphic gene circuit, we first fit its output to a perceptgene model using

½ AHL
K1

� �n1

� aTc
K2

� �n2

=Kd �

m

+β

½ AHL
K1

� �n1

� aTc
K2

� �n2

=Kd �

m

+ 1

and extracting Hill coefficient (m). Second, we estimate the IR and MFC values. The IR of a perceptgene circuit is equal to the range where the circuit can compute the

multiplication of the weighted inputs. For a perceptgene with more than one input, the IR used in Table 1 is calculated as the average of the IRs for each input. The MFC is calculated by the ratio

between themaximumandminimum levels of themeasured perceptgene output. Finally, theNonlinearity degree of neuromorphic genecircuits is calculatedby m
log MFCð Þ=logðIRÞ. The table above shows

that theNonlinearity increased bymore than threefoldswhen a sigmoid activation functionwas added (comparing Fig. 1b versus Fig. 1g) and increased by twofoldswhen a positive rectifier activation

function was added (comparing Fig. 2a versus Fig. 2d). The Nonlinearity for perceptgene with a linear activation function (Fig. 2h) equals near one.
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Fig. 2 | Perceptgenes basedonauto-negative and auto-positive feedback loops.

a Thepower-law andmultiplication function circuit for inputs AHL and aTc.Mutant

PluxTGT promoter, encoded on an MCP, is regulated by LuxR activator through an

auto-positive feedback loop and is induced by AHL. The PtetO promoter, encoded

on an LCP, is regulated by TetR through an auto-negative feedback loop and is

induced by aTc. A combinatorial promoter Plux/tetO, encoded on an HCP, is regu-

lated by LuxR and TetR with output mCherry. Depicted on the right is a block

diagram for the genetic circuit operation. b Measured AHL, aTc transfer function.

Solid line fits to function AHL
1:25

� �0:45
� aTc

1:25

� �0:55
with R2 =0.95. c Simulated AHL/aTc

transfer function based on a detailed biochemical model. The IPTG and AHL are

normalized by their dissociation constants of IPTG-LacI binding and AHL-LuxR

binding, respectively. Solid line fits to the power-law and multiplication function
AHL
1:25

� �0:45
� aTc

1:25

� �0:55
with R2 =0.96. d Perceptgene with PBAD/AraC activation. An ssrA

degradation tag was added to AraC. e Measured transfer function of the percept-

gene circuit with AHL and aTc analog inputs and Arabinose = 0.5mM. Solid line fits

to perceptgene model
½ AHL

1:25ð Þ
0:45

� aTc
1:25ð Þ

0:55
=1400�

1:27
+0:00045

½ AHL
1:25ð Þ

0:45
� aTc

1:25ð Þ
0:55

=1400�
1:27

+ 1
with R2 =0.85. f A log-

transformed and normalized smooth maximum computation perceptgene circuit

derived from the experimental results. The solid line indicates the maximum

between n6·log(aTc/IDR6) and log(B3) − (n5 −w2)·log(AHL/IDR5), where n5 =0.55,

n6 =0.45, w2 =0.22, log(B3) = −0.2, const2 =0.1, log(IDR5) = 1.5, log(IDR6) = 1.8. The

IDR5 and IDR6 are the input dynamic ranges of AHL and aTc, respectively. g A

perceptgene for computing a log-transformed average function of AHL and IPTG

inputs. The regulatory elements are previously described, except for mutant

PluxAAT promoter, which is encoded on an MCP and regulated by LuxR through

an auto-positive feedback loop. h Measured transfer function of the perceptgene

circuit with AHL and IPTG inputs. Solid line fits to perceptgene model

½ AHL
6ð Þ

0:45
� IPTG

7:2ð Þ
0:42

=400�
0:95

+0:0001

½ AHL
6ð Þ

0:45
� IPTG

7:2ð Þ
0:42

=400�
0:95

+ 1
with R2 =0.85, and Arabinose = 0.5mM. i A log-

transformed and normalized smooth average computation perceptgene circuit

derived from the experimental results. Solid line indicates the average operation

between log(AHL/IDR7) and log(IPTG/IDR8) where log(IDR7) = 1.2,

log(IDR8) = 1.5. The IDR7 and IDR8 are the input dynamic ranges of AHL and

IPTG, respectively. Measured data is normalized by the minimum level. Data

represent the average of three experiments. Source data are available in the

Source data file.
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transformed positive rectifier (Fig. 2d induced with high Arabinose)

can compute the maximum between two log-transformed analog

numbers that are related to AHL and aTc inputs with a particular offset

that is related to AHL only (Supplementary Fig. 36). Our analysis

demonstrated that a log-transformed positive rectifier function with

an input of log(AraC),which is regulated by a linear combination of the

weighted AHL and aTc signals as indicated by our design, can compute

the maximum between the two signals themselves with an added off-

set that is related to one of the signals (“Methods,” Smooth functions).

Therefore, after graphing the AHL and aTc input signals and percept-

gene output at a logarithmic scale, normalizing the input signals to

their respective input dynamic ranges, and normalizing the output

signal by the offset that is related to AHL only, smooth maximum

computation is revealed with a standard error of 23% (Fig. 2f and

Supplementary Table 14).

The third classification function that we implemented with a sin-

gle perceptgene was a log-transformed average of two analog inputs

IPTG and AHL offset by a constant bias (Fig. 2g). The IPTG and AHL

inputs simultaneously regulate combinatorial promoter Plux/lacO
54 via

graded auto-negative and auto-positive feedback loops. The average

operation can be implemented using a perceptgene with a linear

activation function and total weights of 0.5 for both inputs. In this

circuit (Fig. 2g), we designed the perceptgene’s AraC activation func-

tion to be linear over the input dynamic rangewith a slope that yields a

total weights of 0.5 (Supplementary Fig. 38). For the IPTG input, we

used PlacO1/LacI auto-negative feedback with an input weight of 0.95

(Supplementary Figs. 39 and 40). To ensure that AHL’s weightmatches

the IPTG weight, we created a new mutant lux promoter PluxAAT
(Supplementary Fig. 27) and incorporated it into a graded positive

feedback system. The resulting AHL input weight is 0.85, and closely

matches that of IPTG (Supplementary Fig. 40). We then had to com-

pensate for the high IPTG and AHL input weights by fine-tuning the

AraC activation function to exhibit a sufficiently shallow slope in the

log–log domain. First, we used very high Arabinose concentrations to

obtain a PBAD/AraC activation function with a low Hill coefficient

(Supplementary Fig. 22). Then, ourmathematical analysis revealed that

for AraC levels slightly lower than the binding dissociation constant of

AraC to PBAD, along with high Arabinose concentrations, the activation

function’s slope is approximately 0.5 (Eq. 3.23, Supplementary Notes).

Experimentally, with these AraC levels and a high Arabinose con-

centration, the circuit indeed calculates the log-transformed average

of AHL and IPTG (Fig. 2h, with NonLinearity degree around one

(Table 1) offset by a normalized value of−¼with a standarderror of 9%

(Fig. 2i, Supplementary Fig. 41, and Supplementary Table 15). As with

the power law and multiplication circuit, the average circuit output

also remained stable over the course of approximately ten hours

(Supplementary Fig. 94). Further analysis validating the smooth mini-

mum, maximum, and average functions is provided in Supplementary

Notes, Calculations of parameters for a single perceptgene (Supple-

mentary Table 19). We also quantified the signal-to-noise ratio (SNR)

for the three circuits based on single-cell measurements (Supple-

mentary Notes, Noise Analysis in Neuromorphic Circuits). We

observed that SNR for the power law and multiplication stage is

reduced when replacing auto-negative feedback regulation with auto-

positive feedback regulation, and that the addition of the activation

function (AraC) tends to coalesce the SNR distributions of all three

circuits to roughly the same values (Supplementary Fig. 98).

We then assembled combinations of the above perceptgenes into

more complex circuits that implement higher-order functions using

principles of deep ANNs, including feedforward networks44. We first

designed a two-layer perceptron network that implements a three-

input softmajority function, whoseoutput is “1” (i.e., larger than half of

themaximum fold change)when twoormore of its three inputs are “1”

(Fig. 3a). Our simplified mathematical analysis showed that when

considering input values of 0s and 1s, we can evaluate the design

parameters of this perceptron network using a set of linear equations

(Table 2). For this analysis, we use linear-domain perceptron activation

functions that are approximated as piecewise linearwith three regimes

(constant low level when perceptgene input is lower than γL, linear as a

function of input, and constant high level when perceptgene input is

higher than γH). When the inputs to the first perceptron are both low,

its output should be low enough such the second perceptron cannot

be activated regardless of its input value (Table 2, row 1 for state [000]

and row 2 for state [001]). Similarly, when both inputs to the first

perceptron are high, its output should be high enough to activate the

secondperceptron regardless of its input value (Table 2, row7 for state

[110] and row 8 for state [111]). However, when only one of the first

perceptron inputs is high, its output should be insufficient to activate

the secondperceptronby itself (Table 2, row3 for state [010] and row5

for state [100]) but high enough to jointly activate the second per-

ceptron if its input is high (Table 2, row 4 for state [011] and row 6 for

state [101]).

Themapping from a perceptron network design to a perceptgene

network implementation of the majority function involves transfor-

mation to the logarithmic domain (Fig. 3b). The implementation

comprises two cascaded perceptgenes and a GFP output (Fig. 3c). The

perceptgene of the first layer of the cascade has AHL and IPTG inputs, a

topology similar to the perceptgene in Fig. 2g, and T7 RNA polymerase

output. The second layer perceptgene inputs are T7 RNA polymerase

from the first layer perceptgene output and the majority function’s

third input (aTc). T7 RNApolymerase ismodified to include two amber

stop codons, which normally block translation57. Expression of amber

suppressor tRNA supD, which is regulated by aTc, unblocks T7 RNA

polymerase translation and activates T7 promoter (Supplementary

Notes, Design of 3-input majority function), which activates

the GFP output signal.

Our choices of specific weights for implementing the majority

function were guided by the simplified linear-domain analysis in

Table 2 and a conversion of this analysis into the log-domain (Sup-

plementary Table 21). These analyses essentially yielded the same

constraints (Supplementary Table 20 Vs. 21). We determined that the

circuit from Fig. 3c can compute majority even with asymmetric

weights for AHL and IPTG (Supplementary Fig. 46e, with error of 11%).

For PlacO1, the IPTG measured input weight was 0.93 (Supplementary

Fig. 49). Through randommutations, we found amutant lux promoter

PluxM56 which when incorporated into a graded positive feedback

system exhibited AHL input weight of 0.48 (Supplementary Fig. 49)

and a sufficientlywide inputdynamic range (larger than threeordersof

magnitude, Supplementary Fig. 88). This resulted in a design con-

straint for bias B1 such that γL1-min(0.45,0.93) < B1 < γL1 (Supplemen-

tary Table 20). Empirically, B1 is determined by the ratio between the

maximal level of AraC and the binding dissociation constant of AraC to

PBAD. Hence, to satisfy the above constraint we fused an ssrA degra-

dation tag58 to AraC, resulting in a decrease in B1 by two orders of

magnitude from 0.15 to 0.0025 based on simulation results. For the

constraint on the input dynamic range of the fist perceptgene activa-

tion function, we find that its level should be less than the combined

total weight for the AHL and IPTG inputs (γH1 − γL1 < n1 + n2).

For the parameter constraints on the second perceptron, we find

that the system has a solution only when the internal weight of T7 RNA

polymerase is greater than the weight of PtetO/aTc (Supplementary

Table 20, m > n3), reflecting the intuition that T7 RNA polymerase

represents the accumulated value of two inputs to the majority func-

tion. With TetR-based negative feedback regulation, the experimen-

tally measured aTc input weight is 0.7 (Supplementary Fig. 50), while

T7 RNA polymerase is a monomer activator with weight of 1. However,

as our analysis shows, on the one hand the weight of aTc should be

larger than the input dynamic range of the second perceptgene acti-

vation function (n3 > γH2 − γL2), which is approximately equal to 1 (i.e.,

PT promoter has a single binding site for T7 RNA polymerase). On the
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other hand, the weight of aTc should not exceed the weight of T7 RNA

polymerase, satisfying the constraint m > n3. Therefore, we incorpo-

rateddual SupDbinding sites onT7RNApolymerase57, which increases

aTc input weight by approximately 1.5 (Supplementary Fig. 46) to

reach a weight of 1.05. Finally, to ensure that the bias and a single high

input of the second perceptgene could not activate its output, we

reduced the bias by incorporating a low affinity ribosome binding

sequence for T7 RNA polymerase.

After satisfying the various constraint-driven design decisions

discussed above by using a high concentration of Arabinose of

0.25mM that supports near-saturating levels of PBAD activation, the

initial version of the soft majority function yielded a system where

output for two of the eight AHL/IPTG/aTc input cases were incorrect

(left sideof Fig. 3d). Toaddress thisproblem,we focusedon improving

the performance of the soft majority function by fine-tuning Arabi-

nose, a readily accessiblemethod to altermainly circuitweight but also
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bias, specifically modifying PBAD response (Supplementary Fig. 22b).

We measured the performance of the soft majority function under

administration of a set of lower Arabinose concentrations. For each

individual Arabinose level, we measured the response to eight differ-

ent AHL/IPTG/aTc combinations (Fig. 3d and Supplementary Fig. 51),

which allowed us to compute the overall cost function59 (i.e,. error) for

that PBAD/AraC weight (Fig. 3e). Here, the cost function computes the

logarithmicallymean squared error ( Ch i= 1
2N

PN
i= 1 logðzDizi

Þ
� �2

) (Eq. 6.18,

Supplementary Notes) where N is the number of samples (also called

the batch size), zDi is the desired output for each state, and zi is the

observed output for these states. The best performance was observed

for an Arabinose level between 0.03125mM and 0.0625mM that cor-

responds to an intermediate PBAD/AraCweight (Fig. 3e, right side). The

experimental results fit the computation of soft majority function.

These results correlated well with our computational models of the

majority (Supplementary Fig. 47) and cost functions (Fig. 3f, Eqs. 6.16

and 6.17, Supplementary Notes).

Next, we studied whether our circuit’s performance may poten-

tially be optimized using a customized backpropagation learning

algorithm based on gradient descent59,60. Our backpropagation algo-

rithm evaluates how incremental changes in weights for any

perceptgene in the network affect overall system performance (i.e.,

cost function). This evaluation is used iteratively to determine how to

update weights in a gradient descent fashion (Fig. 3g). In the first step

of the algorithm, the outputs for each of the eight majority function

input conditions for both the first layer perceptgene as well as the

second layer (i.e., full circuit) are measured experimentally (Supple-

mentary Figs. 57 and 59). The eight output values for eachperceptgene

are normalized based on the highest level measured and basal

expression (Supplementary Table 26). Then, these experimentally

derived output values are used in conjunction with a chain rule for-

mula to determine the derivatives of the cost function with respect to

changes in the two current weights. These derivatives yield sugges-

tions for the next weights to test (Eqs. 6.21 and 6.22, Supplementary

Notes). The algorithm cycles through the weights one at a time by

evaluating the sign of the partial derivatives of the cost function ∂C
∂n

� �

with respect to this particular weight n. Based on the sign of the partial

derivative, the algorithm updates the weight to the next nearest

available value61. The algorithm contains two phases; in the first phase,

we update m weight, and in the second phase, we update n1 weight.

The algorithm repeats this process until either all output values

reach their desired binary values or the cost function reaches a local

minima.

Fig. 3 | Multilayer perceptgene network and backpropagation algorithm. a The

design of a majority function with two-layer cascaded perceptrons (dashed boxes).

b, c Conversion of the biophysical model of the majority function into a two-layer

perceptgene network with inputs AHL, IPTG, and aTc. Network operation is deter-

mined by the weights (mi, ni), biases (Bi), and activation functions represented by

promoters’ activity. The first layer inputs are AHL and IPTG, and the output is T7

RNA polymerase, which is regulated by PBAD promoter. The second layer inputs are

T7 RNA polymerase and aTc, which their multiplication is achieved via the

expression of aTc-regulated SupD and the binding reaction T7RNA + supD↔

T7RNASupD. This complex activates the T7 promoter and expresses GFP. The AraC is

fused with ssrA degradation tag and encoded on an LCP. The T7 RNA polymerase is

regulated by a low binding affinity ribosome-binding sequence. d Measured

response of the soft majority gene circuit for all eight low/high combinations of the

three inputs: AHL [0.1875, 0.3μM], IPTG [7.8125, 125μM] and aTc [1.5625, 25 ng/mL].

High Arabinose =0.25mM and low Arabinose =0.03125mM. The horizontal dashed

lines separate between the “0” and “1.” e The cost function for soft majority circuit

under various Arabinose levels and its corresponding weight was estimated using

experimental results based on Eq. 6.18, Supplementary Notes. f The simulated soft

majority circuit cost function was estimated using a logarithmic backpropagation

algorithm (Eq. 6.17, Supplementary Notes). g Backpropagation algorithm for two

weights, based on measuring the first and second layer perceptgenes and then

computing partial derivatives for the weights by applying the chain rule using Eqs.

6.21 and 6.22, Supplementary Notes. In phase 1, we update the PBAD/AraCweight (m)

and in phase 2, we update Plux/AHL weight (n1). h Experimental cost function for

two-dimensional weight space. The PBAD/AraC weight is regulated by six different

pre-selected Arabinose levels (0.25, 0.125, 0.062, 0.031, 0.015M, and 0.007mM).

The weight of Plux/AHL is determined by selecting one of a small library of four

genetic variants of the LuxR operator (TCTA, GTTG, GAGC, and TGGG). All

experimental data represent the average of three experiments. Source data are

available in the Source data file.

Table 2 | Truth table of the linear-domain perceptron-based 3-input majority function and evaluation of constraints on the
design parameters

In1 In2 In3 Out Y1 Z1 Y2 Constraints on design parameters

0 0 0 0 Design constraints subsumed by 001 case

0 0 1 0 B1 0 B2+n3 B1<γL1
B2+n3<γL2

0 1 0 0 B1+n2 0≤fA1(B1+n2)<1 B2+m×fA1(B1+n2) B2+m×fA1(B1+n2)<γL2

0 1 1 1 B1+n2 0<fA1(B1+n2)≤1 B2+n3+m×fA1(B1+n2) B1+n2>γL1
B2+n3+m×fA1(B1+n2)>γH2

1 0 0 0 B1+n1 0≤fA1(B1+n1)<1 B2+m×fA1(B1+n1) B2+m×fA1(B1+n1)<γL2

1 0 1 1 B1+n1 0<fA1(B1+n1)≤1 B2+n3+m×fA1(B1+n1) B1+n1>γL1
B2+n3+m×fA1(B1+n1)>γH2

1 1 0 1 B1+n1+n2 1 B2+m B1+n1+n2>γH1
B2+m>γ22

1 1 1 1 Design constraints subsumed by 110, 101, 011 cases

B1 and B2 are the biases of the first layer and second layer perceptgenes, respectively. The three input weights are n1, n2, and n3, whilem is the weight of the first layer perceptgene output (Z1) that

serves as an input to the second layer perceptgene. γL1, γL2 and γH1 and γH2are the lowandhigh thresholdsof thepiecewise-linearfirst and the secondactivation functions fA1and fA2. TheγH2–γL2, and

γH1–γL1 are defined as the input dynamic ranges of the activation functions. According to Fig. 3a, the Y1, Z1, Y2 are computed as:

Y1 =n1 � In1 +n2 � In2 +B1

Z1 =0 For Y1 � γL1
0<Z1<1 For γL1<Y1<γH1

Z1 = 1 For Y1 � γL1

8

<

:

Y2 =n3 � In3 +m � z +B2

Output=0 For Y2 � γL2
0<Output<1 For γL2<Y2<γH2

Output= 1 For Y2 � γL2

8

<

:

Further analysis of the majority function is provided in Supplementary Table 21.
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Using this backpropagation algorithm, we followed the trajec-

tories in a two-dimensional weight space with the PBAD/AraC and Plux/

AHLweights. The PBAD/AraCweight is chosen froma set of six different

pre-selected Arabinose levels and theweight of Plux/AHL is determined

by selecting one of a small library of four genetic variants of the LuxR

operator (Supplementary Figs. 49 and 56). The four Plux mutations

exhibit different weights (0.1, 0.2, 0.27, 0.45) within the operating

dynamic range of Plux/AHL [0.1875–3μM]. We exhaustively measured

the soft majority function response to eight different AHL/IPTG/aTc

combinations across the six different Arabinose concentrations and

four Pluxmutations, in triplicates (a total of 8 × 6 × 4 × 3 = 576 samples).

This allowed us to pre-compute an overall cost function for each PBAD/

AraC and Plux/AHL weight combination (Fig. 3h). In emulating a back-

propagation algorithm, we started at the corner of the weight space

with the lowest values of PBAD/AraC and Plux/AHL weights and itera-

tively updated these weights. Based on the sign of the weight deriva-

tives, the available higher or lower weight was chosen. The next weight

value is either a Plux genetic variant available in our pre-existing library

or anArabinose inducer concentration from an a priori determined set

of inducer values. The optimization trajectory culminated in a solution

that provides the desired majority function binary output values after

three iterations of Plux and Arabinose weight tuning, using information

from 8 × (3 + 3) = 48 samples. Further experiments and analysis vali-

dating the backpropagation algorithm is provided in Supplementary

Notes,Gradient descent andbackpropagation algorithms in living cells

(Supplementary Table 27 and Supplementary Fig. 60).

For our final perceptgene network, we implemented an analog-to-

digital converter (ADC; Supplementary Fig. 61), useful for a variety of

intracellular and extracellular biosensing applications. The conversion

of analog information into digital encoding is a classification problem

that is efficiently solved by ANNarchitectures62 (SupplementaryNotes,

Design and implementation of 2-bit log-ADC). We evaluated three

designs, starting from a perceptgene adaptation of a classical ADC

perceptron network62, a second design that adds two inhibitory reg-

ulatory links, and a third design that improves the fidelity of the digital

output signals. In our first design (Fig. 4a), individual perceptgenes

convert the analog input into digital bits starting from the most sig-

nificant bit (MSB) to the least significant bit (LSB). While the analog

input signal is routed to all perceptgenes, the computation from the

MSB also contributes a negative weight to the LSB. This effectively

subtracts the higher order bit from the LSB’s analog input signal

(Supplementary Figs. 62 and 63). We designed a gene network that

uses transcriptional interference63 to perform subtraction (Supple-

mentary Fig. 65). We first checked whether Plux promoter activity can

be subtracted fromPBAD promoter activity by arranging the promoters

in a convergent orientation64. However, experimental analysis of this

subtraction method revealed that in addition to observing the desired

increase in the input threshold required for output promoter activa-

tion, there was also undesirable repression of maximal promoter

activation (Supplementary Fig. 65). Such repression can affect ADC

performance for high input by displaying (1,0) instead of (1,1). To

alleviate repression of maximal promoter activation caused by the

transcriptional interference, we introduce a second regulatory ele-

ment TetR, which represses a hybrid version of the convergent Plux
promoter (Plux/tetO, Supplementary Fig. 68). In the revised ADC design,

TetR is regulated by theMSB to nullify the subtraction of theMSB from

the LSB only for high input levels.

The revised ADC gene circuit comprises four main elements: the

AHL input stage, theMSB, theMSB subtractor, and the LSB (Fig. 4b, c).

For the AHL input, graded positive feedback with LuxR increases the

input’s dynamic range, as above (Supplementary Fig. 26). To compute

the MSB, AHL activates expression from Plux encoded on a medium

copy number. Computation of LSB involves AraC activation of PBAD as

well as down-regulation by transcriptional interference63 from con-

vergent promoter Plux/tetO, which is oriented in the opposite direction

to PBAD. This transcriptional interference implements subtraction of

MSB from the LSB for intermediate levels of AHL, but not for high

levels of AHL. This resulted in four distinct outputs states for the two-

input ADC (green and red lines in Fig. 4d). An experiment using the

initial circuit design in which Plux promoter (without tetO operator)

replaces transcriptional interference promoter Plux/tetO shows low LSB

levels under high AHL concentrations (purple line in Fig. 4d). Further

experiments are provided in Supplementary Notes, Synthetic Data

converters (Supplementary Figs. 64–70).

To improve the accuracy of the LSB output for the (1,0) state, we

revised the ADC design to compute LSB by including two separate

perceptgenes (LSBlow, and LSBhigh) with the sameGFP output (Fig. 4e, f).

This technique of aggregating circuit output from two promoters has

been used successfully in previous synthetic gene circuit designs19,28.

The LSBlow perceptgene responsible for exhibiting high LSB output for

the (0,1) state is configured similarly to the LSB perceptgene used in the

previous ADC design. One difference is removal of TetR and use of Plux
instead of Plux/tetO for transcriptional interference in order to regulate

LSB by MSB even for high AHL (Supplementary Figs. 67 and 68). The

LSBhigh perceptgene responsible for exhibiting high LSB output for the

(1,1) case consists of promoter Prhl that is directly regulated byAHL-LuxR

but requires high levels of AHL for activation (Supplementary Fig. 73).

This revised design yielded four distinct digital states with improved

performance for the (1,0) state, albeit with inclusion of an undesirable

narrow transitional state between (0,1) and (1,0) (Fig. 4g). The revised

ADC maintained stable output for approximately 10h (Supplementary

Figs. 95–97). In comparison to previous synthetic data converters25,65,

our logarithmic domain analog-to-digital converter performs a complex

computation that encodes the digital output value usingmultiple bits of

information. The circuit in ref. 25 implemented a digitizer, where one

single analog input is converted to three discrete outputs, rather than a

2-bit ADC. The circuits in ref. 65 integrate multiple analog inputs and

display multiple digitals outputs using logic gate design. In terms of

efficiency, the computation in this study requires only two transcription

factors.

Discussion
Emerging applications in synthetic biology benefit from implementa-

tions that achieve complex regulatory functions using a minimal

number of parts, based on designs that can be optimized with efficient

algorithms. The existing paradigms of digital and analog biological

circuits often fail in these regards. Instead, here we introduced the

notion of genetic circuits that implement logarithmic domain ANNs,

with an approach that supports flexible choices of weights and biases

for circuit optimization (Supplementary Notes, Design principles of

neuromorphic gene circuits). Logarithmic operation, which is based

on fold-change regulation rather than absolute changes, is suitable for

biological information sensing and transduction in both natural and

synthetic systems28,53,66 (Supplementary Notes, Perceptual computing

models).

To gain further insight into the benefits of performing log-domain

perceptgene computing, we compared the perceptgene behavior to a

linear-domain perceptron that uses a biologically relevant

Michaelis–Menten activation function instead of a sigmoid function

(Supplementary Fig. 3b). First, with the same input dynamic range for

both models, our analysis showed that the perceptgene successfully

classified an analog signal into low and high levels, in contrast to the

modified perceptron failed (Supplementary Fig. 5). This analysis indi-

cates that logarithmic domain computing is more suitable than linear

domain computing for our neuromorphic gene circuits. Second, our

theoretical sensitivity analysis also showed that logarithmic domain

neuromorphic computing is robust to noise at low signal concentra-

tions, whereas the performance of analog circuits is often poor for such

signals (Supplementary Fig. 10). Third, both the perceptgene and per-

ceptron designs support only a limited number of distinct inputs.While
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the perceptgene is mainly limited by the ability of the biological part

structure to integrate multiple analog signals in regulating gene

expression, the perceptron is limited by the intrinsic noise generated

during signal aggregation (Supplementary Table 1). Given these con-

straints, implementing a linear-domain perceptron in living cells may

nonetheless be practical for applications that focus on a single layer

withmultiple inputs of highly expressed analog signals, such as cell-free

systems67 and microbial consortia68. The observed transfer functions

obtain high sharpness in the case of cell-free systems via substrate

saturation and in the case of the microbial consortia via multicellular

positive feedback using secreted small molecule inducers that bind

transcription factors. However, while a few examples exist, engineering

a large library of synthetic biology devices that exhibit sharp responses

when operating inside individual cells remains a challenge.
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The design principles of logarithmic domain ANNs exhibit col-

lective resilient properties, offer efficient parallel execution of com-

plex functions, require a small number of components to produce

required results, and provide scalability for deep networks. These

properties enable construction of systems that can be readily adapted

to customized functions by supervised optimization algorithms46,48.

We began to explore these properties experimentally by creating

several neuro-inspired genetic circuits that encode minimum, max-

imum, and average functions, each comprising a single perceptron

with analog outputs. Theminimumandmaximum functions arewidely

used in fuzzy logic computing to implement conjunction, disjunction,

implication, equivalence, and negation69. For biological systems, these

functions can, for example, be useful for situations that require graded

expression levels that are precisely determined by multiple inputs, as

opposed to simple ON/OFF expression. The minimum operation may

improve safety and efficacy of genetic circuits for cancer immu-

notherapy because it enables recognition of cancer biomarkers in a

manner reminiscent of an AND logic gate70,71. But in contrast to AND

logic, the minimum operation will activate the immunotherapy at

levels proportional to the biomarkers detected, which may reduce

undesirable effects such as cytokine storms. The average function is

useful for engineering biological systems able to tolerate noise and

compensate for distortion of biological signals.

Our neural gene circuits may also provide an alternative frame-

work for building logic functions that reduce usage of cellular

resources. For example, the implementation of our three-bit soft

majority function requires 15 biological parts (i.e., promoters and

genes), in comparison to 22 parts used for the state-of-the-art three-bit

majority implementation based on the digital abstraction2. To improve

the accuracy of our majority circuit and get distinct low/high outputs,

we may connect the circuit output with a single recombinase protein

that usually has a sharp response (Supplementary Fig. 52). The design

of a two-bit ADC in mixed-signal computation required three logic

stages72 and approximately ten biological parts25, whereas our neuro-

inspired two-bit ADC in which the MSB regulates the LSB in an analog

manner requires only two transcription factors. In terms of a relevant

but more complex computation, theoretical analysis of a 2-bit Full

Adder implementation comparing the neuromorphic versus digital

approaches is provided in Supplementary Fig. 91. Besides minimizing

circuit sizes, our perceptgene networks also operate with low

expression levels, mainly in order to maintain low bias levels. For

instance, our circuits’ proteins are expressed at low levels either via

usage of weak ribosome binding sites, weak RNA polymerase binding

sites, or by fusion with ssrA degradation tags. In contrast, digital sys-

tems often attempt to operate with significant noise margins, and

hence high expression levels for ON values.

Another important property of ANNs is the ability to efficiently

fine-tune and repurpose their functionby changingweights andbiases.

For example, by increasing the bias andweights of a perceptgene from

low to high, its computation can be modified from AND to OR (Sup-

plementary Fig. 75). This ability is experimentally demonstrated by

inducing a small molecule that controls transcription factor

sequestration73 via protein–protein interactions (Fig. 5a). Specifically,

we selected ExsD to shunt ExsA from binding to the PexsA promoter,

which activates the GFP expression.We first used the IPTG/LacI system

to regulate the expression of ExsA andAHL to induce the expression of

anti-activator ExsD through regulating PluxTGT/LuxR. The experiment

of IPTG-GFP transfer functions for various AHL concentrations indi-

cated that this sequestration significantly decreased the input IPTG’s

Hill coefficient and hence modulated the preceptgene’s internal

weight (Fig. 5c). Also, the experiment results of IPTG-GFP revealed an

increase in the dissociation constant of IPTG and a decrease in the

maximum fold change of PexsA (Fig. 5c). However, since the bias is

inversely proportional to the dissociation constant (“Methods,”

Perceptgene abstract model), and the maximum fold change is

inversely proportional to the thresholdof theperceptgene’s activation

function, we concluded that titrating AHL affects mainly the percept-

gene’s internal weight. Then, we built a two-input perceptgene circuit

using the combinatorial promoter (PlacO1/tetO) and auto-negative

feedback loops encoding LacI and TetR, as shown in Fig. 1b. In the

new design (Fig. 5d), we connected the power-law and multiplication

function to PexsA/ExsA activation function by encoding ExsA down-

streamof PlacO/tetO. To control the internal weight, we induced ExsD by

AHL using a weak Plux mutant that broadens the AHL dynamic range.

We induced the gene circuit with (1) AHL =0, which led to a high

internal weight observing GFP signal with an OR-logic gate manner

(Fig. 5e), (2) AHL =0.34μM, which led to a low internal weight obser-

vingGFP signalwith anAND-logic gatemanner (Fig. 5f). To improve the

accuracy of the OR circuit and get distinct low and high outputs

(Fig. 5g), we increased the input weights by enhancing the strength of

the auto-negative feedback loops. In the modified design, we con-

structed the auto-negative feedback loops of PlacO1 and PtetO in med-

ium plasmid copy numbers instead of low copy numbers, which

resulted in a more than 25% increase in IPTG’s and aTc’s power-law

coefficients (Supplementary Fig. 79). These experimental results are

supported by our biochemical models (Supplementary Fig. 21).

As another example, the ADC circuit can be easily reconfigured to

function as an AHL-induced ternary switch with distinct low, medium,

and high output states (Supplementary Notes, Design and imple-

mentation of ternary switch). Analysis of themodel suggested this can

be achieved by enhancing activation of the LSB perceptgene (Sup-

plementary Fig. 76). Accordingly,we experimentally administeredhigh

levels of Arabinose, and observed the desired ternary response to AHL

(Fig. 4h). As yet another example, we analyzed the behavior and

topology of themajority circuit and experimentally demonstrated that

replacement of promoter PtetO with combinatorial promoter Plux/tetO
yields a new logic function “AHL OR [IPTG AND aTc]” (Supplementary

Fig. 78). Furthermore, the neuro-inspired design of the three-input

Fig. 4 | Genetically encoded data converters based on neural network princi-

ples. a Perceptgene-based circuit design and simulation of a two-bit analog-to-

digital converter (ADC). The input “x” is an analog signal, the outputs are digital

bits: most significant bit (MSB) and least significant bit (LSB). b The modified per-

ceptgene design of 2-bit ADC based on analyzing gene networks. A subtraction of

the MSB from the LSB using transcriptional interference (denoted by “−1”) is

required. c Genetically encoded two-bit ADC. The circuit converts AHL con-

centration into LSB and MSB. Positive feedback regulation of AHL via mutant

PluxM56 promoter linearizes the response. The MSB, encoded on an MCP, is com-

puted by the Plux promoter, which regulates mCherry and TetR. The LSB, encoded

on an HCP, receives the linearized AHL, which activates PBAD promoter and

expresses GFP. The MSB subtractor (MSBsub, encoded on an HCP) regulates PBAD

promoter via transcriptional interference (Plux/tetO, oriented in the opposite direc-

tion to PBAD). d Measured and simulated response of a 2-bit ADC (Arabinose = 0.4

mM). Red triangles show the measured MSB mCherry. Green circles show the LSB

GFP with Plux/tetO promoter, purple diamonds show the GFP with Plux (Arabi-

nose = 0.4mM). The Plux/tetO and Plux configurations of the convergent promoters

are shown below the graph. e Design of a 2-bit ADC using three perceptgenes, two

of which are used for computing the LSB; LSBlow is activated only under low AHL

concentrations, and LSBhigh is activated only under high AHL concentrations. The

MSB topology is similar to Fig. 4b. f Genetic implementation of the 2-bit ADC from

Fig. 4e. In comparison to Fig. 4c, we removed TetR, replaced Plux/tetO with Plux to

obtain LSBlow, and implemented LSBhigh using Prhl promoter that is activated by

high levels of AHL.gMeasured and simulated response of the 2-bit ADC fromFig. 4f

(Arabinose = 0.06mM). h Measured and simulated response of the ternary switch

(Arabinose = 0.4mM). The horizontal dashed lines in Fig. 4d, g separate between

the “0” and “1”. Computational simulations are depicted by lines. The data repre-

sent the average of three experiments, and is denoted by various data point mar-

kers and std. dev. Measured data is normalized by the minimum level. Source data

are available in the Source data file.
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majority circuit allowed us to optimize the error by changing the

weights of PBAD/AraC and Plux/AHL in similar manner to back-

propagation algorithm. Supplementary Notes, Design principles of

neuromorphic gene circuits, provides experimental demonstration of

modulating weights and biases using a variety of additional biological

mechanisms including transcription factor sequestration, steric hin-

derance, and operator sequences.

Our theoretical and experimental study shows that perceptgene

networks can utilize a broad range of biological regulatorymechanisms

and accordingly, we expect to be able to implement these networks

with other modalities of biological regulation (e.g., protein–protein

interactions74,75 and RNA devices76,77) and in different organisms. Flex-

ibility in implementation approaches will help employ such neural

networks to address a wide range of industrial, diagnostic, and
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therapeutic applications (Supplementary Notes, Potential Applications

of Synthetic Neuromorphic Circuits). For example, bioengineers could

use analog-to-digital converters for selecting which specific combina-

tions of several genes to express based on administration of a single

inducer. Also, with a single inducer, bioengineers could harness the

ternary switch to select between one of multiple expression levels for a

given gene in a robust and noise resistant fashion. These circuits could

also form the basis for engineering more sophisticated cellular bio-

sensing, e.g. multi-bit classifiers with higher precision than their digital

counterparts and increased robustness relative to their analog coun-

terparts. These regulation and sensing capabilities are valuable both in

biomanufacturing and therapeutic contexts.

We anticipate that the framework described here can efficiently

optimize gene circuit design by applying data-driven algorithms,

which determine how one can modify the circuit’s design parameters

by measuring the circuit’s output signals in each step during the

optimization process. Future efforts will include codifying the design

principles of neuromorphic gene networks such as development of

effective mechanisms to combine coarse-grain and fine-grain control

over weights and biases (Supplementary Notes, Design principles of

neuromorphic gene circuits). ANNs are also compatiblewith the digital

and analog computing platforms. One can leverage the specific

advantages of each of these three platforms in a synergistic fashion to

create an efficient, accurate, and scalable hybrid approach for robust

genetic engineering of living cells (Supplementary Fig. 99). Future

efforts will also focus on developing computer-aided design tools that

combine ANN design principles with linear equations and logic gates

(e.g., Cello2) to automate biological engineering. Analogous to the

manner by which natural signaling pathways combine a variety of

regulatory modalities, we anticipate that future synthetic gene net-

works integrate the different approaches mentioned above in ways

that are particularly suitable for the biological substrate.

Methods
Perceptgene abstract model
Supplementary Figs. 42 and 43 describe a general structure of a multi-

input perceptgene. The collective signal is regulated by a combina-

torial (hybrid) promoter (PHybrid), which includes multiple DNA reg-

ulatory binding sites (where either activator or repressor can bind and

regulate the promoter). The activity of the combinatorial (hybrid)

promoter can be expressed as78:

PHybrid =
YN

i = 1
F i

Inputi
Kmi

� �hi

 !

ð1Þ

N is the number of the inputs, kmi is the dissociation constant of

binding Inputi to the appropriate DNA site within the hybrid promoter,

and hi is the Hill coefficient. Fi is a regulation factor (0 ≤ Fi ≤ 1) that

describes the binding of the inputs to DNA sites and usually has a non-

linear responsewith respect to the inputs. The nonlinearity arises from

intermolecular interactions and network topologies of biochemical

reactions. Applying negative and positive feedback loops can broaden

the input dynamic range of Fi. The promoter activity within the desired

input dynamic range is:

PHybrid =
YN

i = 1

Inputi
K i

� �ni

ð2Þ

ni is determined by hi and circuit topologies, and ki is a normalization

constant that depends on kmi and circuit topologies (Eqs. 2.17 and 2.37,

Supplementary Notes). A similar form to Eq. 2, “Methods,” can be

observed for biochemical binding reactions to build a complex (E +

S↔ ES). The Collective signal (transcription factor level) is described

by an ordinary differential equation that models the production rate

(α) multiplied by the hybrid promoter activity and subtracted by the

degradation process represented by protein half-life or cell growth

rate (τ):

dCollective

dt
=α � PHybrid �

Collective

τ
ð3Þ

In the steady state (dCollective/dt =0), and by substituting Eq. 2,

“Methods” into Eq. 3, “Methods,” we obtain:

Collective =
YN

i= 1
α � τ�

Inputi
K i

� �ni

ð4Þ

where α‧τ has units of concentration, and it equals the maximum level

of produced Collective signal (e.g., protein, Eq. 2.13, Supplementary

Notes). When the Collective signal binds to the output promoter, its

activity is initiated:

POut =

Collective
Kd

� �m
+ β

1 + Collective
Kd

� �m ð5Þ

where β is the basal level of the promoter, Kd is the dissociation con-

stant of binding theCollective signal to Pout promoter, andm is theHill

coefficient. Equations 4 and 5, “Methods,” can yield:

y=
QN

i= 1B � xi
ni

� �m

POut =
y+β
1 + y

8

<

:

ð6Þ

Fig. 5 | A programmable two-input perceptgene network. a A block diagram for

a programmable perceptgene with a single input (IPTG). The AHL inducer controls

the internal weight (m) of the perceptgene output. b High-level genetic circuit

diagram and implementation. The design is based on protein sequestration where

ExsD shunts ExsA from activating GFP expression encoded on HCP. The IPTG and

LacI, encoded onMCP, interact via an auto-negative feedback loop to regulate ExsA

that binds PexsA. In our implementation, we used PlacO1 promoter to implement the

auto-negative feedback, and a combinatorial promoter (PlacO/tetO) to express ExsA

encoded on LCP. In the absence of TetR, the combinatorial promoter activity is

determined only by LacI and IPTG. The LuxR/AHL complex regulates the expres-

sion of ExsD. LuxR encoded on HCP is expressed by a constitutive promoter (ProD).

To control ExsD encoded on MCP, we used a mutant Plux promoter (PLuxTGT).

c Measured IPTG transfer functions under different AHL conditions. The dotted

lines are fittings to Hill-functions normalized by their minimum levels 1
β

AHL
Keff

� �meff

+β

1 + AHL
Keff

� �meff
.

MFC is the maximum fold change: MFC= log(1/β) (“Methods,” Perceptgene

abstract model). d A programmable perceptgene with IPTG and aTc analog inputs

computes logic operations. The power-law and multiplication circuit with inputs

IPTG and aTc from Fig. 1b was connected with the PexsA/ExsA system. The ExsD is

controlled by AHL and the auto-negative feedback loops for LacI and TetR are

encoded on MCP. e Measured IPTG/aTc transfer function for AHL=0. f Measured

IPTG/aTc transfer function for AHL=0.34μM yields AND-logic gate manner.

Depicted distributions on the bottom are the experimental flow cytometry data for

the four low/high combinations of the two inputs IPTG [0.125, 0.1mM] and aTc [6.5,

50 ng/mL]. g Modified circuit: the auto-negative feedback loops for LacI and TetR

are encoded on LCP. Measured IPTG/aTc transfer function for AHL=0 yields an

OR-logic gate manner. Depicted distributions on the bottom are the experimental

flow cytometry data for the four low/high combinations of the two inputs IPTG

[0.125, 0.1mM] and aTc [6.5, 50 ng/mL]. Measured data is normalized by the

minimum level. Source data are available in the Source data file.
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xi = Inputi/Ki is a normalized input, and B = α‧τ/Kd. The model in Eq. 6,

“Methods,” includes three design parameters:

(1) Network weights (ni and m): are represented by the effective Hill

coefficients, and calculated by the log domain slope of the regu-

lated promoter’s dosage response curve. The Hill coefficients

depend on the biological cooperativity of proteins, the number of

binding sites in the promoter, the protein quaternary structure

(the number of subunits that interact with each other and arrange

themselves to form a final protein), and the design topology.

(2) Bias (B): The bias is determined by the ratio between the max-

imum expression level of a transcription factor (Collective signal)

and its binding dissociation constant to DNA. The maximum

protein or transcription factor expression level of the Collective

signal in Eq. 4, “Methods” is equal to the product of the protein

production rate determined by the translation/transcription

rates, mRNA/protein half-lives, and cell growth rate. The Kd dis-

sociation constant is determined by binding affinities in

protein–protein or protein–DNA reactions.

(3) Activation function depends on promoter activity and is given

by the Michaelis–Menten model. The basal level has two sig-

nificant roles in determining the behavior of the perceptgene

model. First, it preserves the maximum fold change (MFC) (i.e.,

output dynamic range) in the logarithmic scale: MFC = log(1/β),

and second, it sets the effective threshold (Th) of the percept-

gene. (10�log 1=βð Þ=2 = Th+β
1 +Th+β

, Supplementary Notes, Calculations

of parameters for a single perceptgene).

Smooth functions
Starting with smooth minimum function: When PBAD promoter is

induced with low Arabinose levels, we can approximate its activity

within the desired input dynamic range as a shifted and biased log-

transformed negative rectifier activation function (Supplementary

Fig. 32c):

PBAD /
log AraCð Þ log AraCð Þ< u01

constant log AraCð Þ> u01

�

ð7Þ

Numerically, Eq. 7, “Methods,” can be approximated as (Supple-

mentary Notes, Smooth logical functions):

PBAD / min u01,logðAraCÞ
� �

+ fmax ð8Þ

when the u01 + fmax is the highest output. Empirically, we observed that

fmax can be estimated as:

fmax =w1 � logðaTc=IDR4Þ+ const ð9Þ

In Eq. 9, “Methods,” the log-transformed perceptgene output is

presented as a function of log(IPTG/IDR3) (Supplementary Fig. 34a). In

this analysis, we displayed the perceptgene output as a 2D plot, where

the x-axis is IPTG concentration, and aTc is a constitutive parameter

over IPTG values. Alternatively, fmax can be expressed as a function of

IPTG if the preceptgene output is presented as a function of log(aTc/

IDR4). In our design (Fig. 1g), the input to PBAD activation function is a

linear combination of weighted inputs (IPTG, aTc), with weights n3
and n4:

logð
AraC

AraCmax

Þ=n3 � logðIPTG=IDR3Þ+n4 � logðaTc=IDR4Þ ð10Þ

where AraCmax is themaximum protein level (“Methods,” Perceptgene

abstract model). Using the mathematical identity (Supplementary

Notes, Smooth logical functions).

minfu01,x + yg=minfu01 � y,xg+ y ð11Þ

the empirical fmax observation from Eq. 9, “Methods,” and defining

x = n3·log(IPTG/IDR3) and y = (n4 −w1)·log(aTc/IDR4) + log(AraCmax) for

Eq. 11, “Methods,” above, we obtain that the perceptgene computes:

min u01 � log AraCmax

� �

� n4 �w1

� �

� log
aTc

IDR4

� �

,n3 � log
IPTG

IDR3

� �� 	

+n4 � log
aTc

IDR4

� �

+ const1 + log AraCmax

� �

� u01

ð12Þ

The term log(AraCmax) − u01 is equal to log(B2),whereB2 is the bias

(Eq. 3.3.3, Supplementary Notes). The smooth minimum computation

between n3·log(IPTG/IDR3) and log(B2) − (n4 −w1)·log(aTc/IDR4) can be

extracted by subtracting the normalized log(GFP) output signal by

0.5·log(aTc/IDR4) −0.4 since n4 ≈0.5, and const1 + log(B2) = −0.4.

Smooth maximum functions: When PBAD promoter is induced

with high Arabinose levels, we can approximate its activity within the

desired input dynamic range as a shifted and biased log-transformed

positive rectifier activation function (Supplementary Fig. 32c):

PBAD /
constant log AraCð Þ<u02

logðAraCÞ log AraCð Þ>u02

�

ð13Þ

Numerically, Eq. 13, “Methods,” can also be approximated as

(Supplementary Notes, Smooth logical functions):

PBAD / max u02, log AraCð Þ
� �

+ fmin ð14Þ

with u02 + fmin signifying the lowest output. Empirically, we observed

that fmin can be estimated as:

fmin =w2 � log
AHL

IDR5

� �

+ const2, ð15Þ

In our design (Fig. 2d), the input to PBAD activation function is a

linear combination of the weighted input signals (AHL, aTc), with

weights n5 and n6:

log
AraC

AraCmax

� �

=n5 � logðAHL=IDR5Þ+n6 � logðaTc=IDR6Þ ð16Þ

(“Methods,” Perceptgene abstract model). Using the mathema-

tical identity (Supplementary Notes, Smooth logical functions):

max u02,x + y
� �

=max u02 � y,x
� �

+ y ð17Þ

the empirical fmax observation from Eq. 15, “Methods,” and defining

x = n6·log(aTc/IDR6) and y = (n5 −w2)·log(AHL/IDR5) + log(AraCmax),

this yields a perceptgene that computes

max u02 � log AraCmax

� �

� ðn5 �w2Þ � log
AHL

IDR5

� �

,n6 � log
aTc

IDR6

� �� �

+n5 � log
AHL

IDR5

� �

+ const2 + log AraCmax

� �

� u02

ð18Þ

The term log(AraCmax) − u02 is equal to log(B3), where B3 is the

bias (Eq. 3.8, Supplementary Notes). Hence, this perceptgene com-

putes the maximum between two log-transformed analog numbers

that are related to AHL and aTc, which is then offset by an analog

value that is related to AHL only (Supplementary Fig. 36). The

smooth maximum computation between n6·log(aTc/IDR6) and

log(B3) − (n5 −w2)·log(AHL/IDR5) can be extracted by subtracting the

normalized log(GFP) output signal by 0.46·log(AHL/IDR5) −0.1 since

n5 ≈0.46 and const2 + log(AraCmax) − u02 = −0.1.
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Strains, media, and chemicals
Escherichia coli 10-beta (#C3019H, New England Biolabs) was used for

plasmid construction and all experiment assays. All liquid media used

in the study was Luria-Bertani broth (LB, 10 g L−1 tryptone, 5 g L−1 yeast

extract, and 10 g L−1 sodium chloride) in liquid medium or agar sup-

plemented with the appropriate antibiotics at the final concentrations

of: Kanamycin (K1377, Sigma-Aldrich), 30 µgmL−1; Chloramphenicol

(C0378, Sigma-Aldrich), 34 µgmL−1; Carbenicillin (10177012, Invitro-

gen), 50 µgmL−1. The specifics of E. coli 10-beta include: araD139D (ara-

leu) 7697 fhuA lacX74 galK (W80 D (lacZ)M15) mcrA galU recA1 endA1

nupG rpsL (StrR) D (mrr-hsdRMS-mcrBC).

All chemicals used in the study are of the highest analytical grade.

For preparation of stock inducers, powder of L-(+)-Arabinose (A3256,

Sigma-Aldrich, 1.3M), N-(3-Oxohexanoyl)-L-homoserine lactone (AHL,

K3007, Sigma-Aldrich, 1mM), Isopropyl-β-D-1-thiogalactopyranoside

(IPTG, I6758, Sigma-Aldrich, 1M)was dissolved inwater. Stock solution

of Anhydrotetracycline (aTc, 631310, Takara Bio, 20μgmL−1) was pre-

pared using organic solvent such as ethanol.

Plasmid construction and molecular cloning
All the plasmids in this work were constructed using basic molecular

cloning techniques79. PCR was carried out with a Bio-Rad S1000™

Thermal Cycler. Oligonucleotides were synthesized by IntegratedDNA

Technologies (Coralville, IA). Restriction digestion enzymes were

purchased from New England Biolabs (Beverly, MA) and Thermo Sci-

entific FastDigest. Ligation were performed using T4 DNA Ligase

(#M0202, New England Biolabs), and PCR was performed using Phu-

sion High-Fidelity PCR kit (#E2621, New England Biolabs).

Synthetic DNA constructs were built using conventional sub-

cloning using restriction digestion and ligation, Gibson Assembly and

Site-directed mutagenesis and with the method chosen depending on

their individual needs.

Parts are defined aspromoters, RBSs, genes, terminators, originof

replication and antibiotic resistance. Manipulation of different parts of

the same type was carried out using the same restriction sites; the

origin of replication was cut with AvrII and SacI restriction enzymes,

the gene was digested with Acc65I and BamHI restriction enzymes and

the antibiotic resistance was cut with SacI and AatII/XhoI restriction

enzymes.

To assemblemulti parts we used the Gibson AssemblyMasterMix

(#E2611L, New England Biolabs) to join the DNA fragments (Ipswich,

MA), following the manufacturer’s instructions. The overlapping

inserts were prepared by PCR amplifications using the Phusion High-

Fidelity DNA Polymerase (#M0530L, New England Biolabs). For the

purification of DNA, the Monarch Nucleic Acid Purification Kits were

used (#T1030, New England Biolabs). Each assembly reaction con-

tained approximately 250ng ofDNA fragments, followedby incubated

at 50 °C for 60min. For transformation, we used standard heat shock

in E. coli 10-beta cells, followed by colony PCR screening on the next

day. Selected colonies were grown overnight for miniprep (Qiagen,

Hilden, Germany) and sent for standard sequencing (Macrogen Eur-

ope, TheNetherlands) using appropriate primers.Mutations in the Plux
promoter were performed using site-directed mutation (210518, Agi-

lent QuickChange lightening), following the manufacturer’s protocol.

Random mutations were first performed in a simple circuit, Plux-GFP-

PlacO-luxR. Transfer functions of mutated colonies were characterized.

The mutations with desired characteristics were then selected for

sequencing and integrated with the other parts in this work. All syn-

thetic parts used in this work are listed in Supplementary Notes, List of

biological parts used in this study. Supplementary Notes, Plasmid

Maps, provides details regarding plasmid maps. Table in Supplemen-

tary Notes, List of strains used in this study, provides the list of strains

used in this study. The references in Supplementary Notes, Supple-

mentary References, provide details regarding the origin of the

plasmids.

Circuit characterization
Overnight cultures of E. coli strains were grown from frozen glycerol

stocks at 37 °C, in a Shel Labs SSI5 shaking incubator at 250 r.p.m., in

5ml of LB with appropriate antibiotics: Carbenicillin (50 µgmL−1),

Kanamycin (30 µgmL−1), Chloramphenicol (34 µgmL−1). The inducers

used were Arabinose, IPTG, aTc and AHL (Sigma Aldrich). Overnight

cultures were diluted 1:100 into 5mL fresh LB with appropriate anti-

biotics and were incubated at 37 °C, 250 r.p.m. for 30min. Cultures

(200 µL) were then moved into 96-well plates, combined with indu-

cers, and incubated for 4 h and 20min in a microplate shaker (37 °C,

500 r.p.m.) until they reached an OD600nm ~ 0.4–0.6. Then, the fluor-

escence and scattering of bacterial cultures were analyzed through

flow cytometry analyzer.

The flow cytometry analyzer voltages were adjusted using CyEx-

pert 2.2 software so that themaximumandminimumexpression levels

could be measured with the same voltage settings. Thus, consistent

voltages were used across each entire experiment. The same voltages

were used for subsequent repetitions of the same experiment. GFPwas

excited with a 488 nm laser, and mCherry was excited with a

561 nm laser.

In all experiments, 10,000 events have been obtained and

the fluorescence and forward and side scattering were taken

using the CytExpert 2.2 software (Supplementary Fig. 256). The geo-

metric median of the gated fluorescence distributions was

calculated using MATLAB. Fluorescence values were based on geo-

metric medians of each population from three experiments and is

reported here as the fluorescence value of a sample in arbitrary units

(arb. units). The flow cytometry data for one representative experi-

ment is provided in Supplementary Notes, FACSData, (Supplementary

Fig. 256).

Reporting summary
Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The flow cytometry experiments generated during the current study

are available on GitHub with https://doi.org/10.5281/zenodo.7041620.

Source data are providedwith this paper. ZenodoULR: https://zenodo.

org/record/7040614#.YxmnkXbP2Uk. Source data are provided with

this paper.

Code availability
The algorithm codes that are used in this study are available onGitHub

with https://doi.org/10.5281/zenodo.7041620. Zenodo ULR: https://

zenodo.org/record/7040614#.YxmnkXbP2Uk.
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